
5. Testing
For the different areas of the project, there will be individual tests that ensure each section of the
component works and fails when intended, and the system as a whole will be tested. One of the
unique challenges with this design is testing the functionality of the AI model rather than testing
just the accuracy. Testing the accuracy is straightforward, as the model is run on test data and
evaluated.

5.1. UNIT TESTING

AI Model: We will need to test the AI model for accuracy separate from the other components. We
will have a baseline model that provides a reference point for comparing the performance of the
model. Looking through the provided errors will show the weakness within allowing us to focus on
the weak parts of the model. The data set will be split into two parts where one part can be used for
training and the other used for testing. In addition to testing the accuracy of the model, we will test
whether the code for the model does what is intended. We will integrate our model testing into a
CI/CD pipeline.

Individual Cloud Functions: Our backend cloud functions will each need to be tested individually.
This will include validating data sent by the user and data parsing for the response. Our back-end
cloud functions will be tested using the PostMan API. For each individual cloud function, there will
be a corresponding unit test that sends a request and validates the response, along with unit tests
that ensure failures and errors are correctly handled by the cloud functions. In most Python
scenarios, we can use the unit test framework to run and validate our tests.

Basic front-end component testing: Our front-end will be made up of components such as buttons,
text input fields, etc. We should test the behavior similar to how a user would use the application
using libraries such as the React Testing Library (RTL). This library is useful for asserting state or
values from front-end components such as text entries, if a button is disabled or enabled, etc. We
will also use Jest to run the tests, and confirm whether they failed or succeeded.

5.2. INTERFACE TESTING

The front-end interface of our project is a front-end built with React. The React Testing Library will
be useful in writing the interface tests by creating a virtual DOM for the tests to run in. We will be
running the tests Jest, a JavaScript testing library that is known for its simplicity and isolated tests.
Isolating our tests lets each component of the interface be tested without the influence of another.

The backend interface will be built using cloud functions written in Python. Similar to the unit
testing stage, the unit test library should provide what we need to test the entire backend suite.

5.3. INTEGRATION TESTING

One of the major integration paths we will need to test is connecting the front-end to and from our
cloud platform. This will involve careful planning from both sides to ensure it works as intended. To
ensure that the front-end is receiving calls, we can mimic a response that uses the same path as a
real response would. Much like the interface testing, this can be done using Jest.

Our backend cloud functions also have to make calls to both our database and our AI model. We
should test these together to ensure we can read/write data to a mock database and send mock calls



to the AI model. This testing framework, mock from unit test, is specifically designed for the mock
calls that trigger the cloud functions.

5.4. SYSTEM TESTING

To test the entire system we will need to make sure we have a list of all the requirements our project
should meet. This will allow us to create a test plan that outlines the key functionalities. We will
continue to use unit tests in our case Jest to make sure they meet their specifications. For
integration testing, we will use end-to-end testing to test user interactions. For backend we can use
Postman to validate the communication between the front-end and backend. We can also do
performance testing that can test response time. This should also be continuously monitored for
security, performance, and user experience.

5.5. SYSTEM TESTING

We will build new components and test them with the old components before merging them to
main. A CI pipeline will be established to automatically run these tests for each new branch looking
to merge. By keeping new components and features in separate branches, we can mitigate risk
associated with regressing or damaging finished features. On the ML side, since our model will
undergo multiple training iterations on the same data, we aim to prevent overfitting by employing a
subset of the data for testing. This allows us to assess whether the model is overfitting or not. Our
strategy to prevent overfitting will be a notebook with k-fold cross-validation. This enables
automatic assessment of whether the model is improving or succumbing to overfitting for our
dataset. Moreover, this method will be useful in the beginning of our project for selecting the ML
approach that best suits our data.

5.6. ACCEPTANCE TESTING

To demonstrate that the design requirements are being met we can establish clear traceability
between the design requirements and the testing phases. This can be done by having each
requirement aligned with a list of test cases which will ensure that every requirement is tested.

To involve the client in the acceptance testing we will have them test the project to see if it works
as they would expect it to. The client can provide feedback during this process which can range
from defects, deviation within the requirements, or places where the software doesn’t meet
expectations. This will also ensure that both functional and non-functional requirements have
been met and that the final product aligns with the expectations.

5.7. SECURITY TESTING

It is important to ensure the privacy and safety of user data and to maintain the accuracy and
reliability of the predictions. In order to do that we will make sure that the dataset used for
training and testing the model is anonymized and does not have any personally identifiable
information. In order to do this we can implement data encryption mechanisms to protect the
sensitive data during transmission and storage. We will also validate input data to prevent
malicious input that could lead to incorrect predictions. We will lastly use authentication and
authorization mechanisms to control user access to the model.

5.8. RESULTS

We have completed basic tests to confirm that AWS can host an AI model. This uses the SageMaker
service with its integrated Jupyter notebooks. Our test consisted of creating a notebook and writing



some Python code to ensure that a basic, algorithmic machine learning model could be created and
run on some data hosted in AWS. While our model will use neural networking, the test confirms
that the foundational steps exist to create the model.

We have also tested hosting a front-end page utilizing a different AWS service called S3, a simple file
storage system. This will help us keep our different components within the same overarching
framework of AWS. As shown in figure 1, the link to the HTML page we created is publicly available,
meaning that the service can be reached from anywhere once it is fully built out.

Figure 4: Result of basic front-end test using AWS to visually show an HTML page deployed to an AWS URL.


