Allergy Prediction Using Artificial Intelligence

Client Lead: Joseph Trembley Team Lead: Noah Ross Minute Taker: Ella Godfrey Research Lead: Xerxes Tarman Quality Assurance Lead: Alex Ong

Client: Ashraf Gaffar

Advisors: Ashraf Gaffar, Ashfaq Khokhar

Introduction:

- **Goal:** predict allergic reactions to medicines using machine learning
 - Rapid response time
 - Non-invasive testing
 - Genetic/Biological factors
 - Gender
 - Age
 - Skin Conditions
 - Skin Tone

Introduction: (Continued)

- Implementation:
 - \circ Components
 - React Front end
 - Python Back end to handle requests
 - Locally trained Keras model
 - Comparison between cloud providers
 - AWS
 - Google Cloud

Design:

- Server-Side: Data processing, validation, and running the ML model.
- Client-Side: Entering user data, calling REST API, displaying prediction results.
- Changes: Database has been removed from design.

Progress: Front End

- Second iteration complete
- Sends/receives requests
- Takes user data and displays information from back end
- Selectable options for Skin Conditions, simplifies values to feed into the model

				Patient	Informa	ation				
Gender										
Male										
Birth Year										
2002										
Skin Tone										
Common	Page 1	Page 2	Page 3	Skin C Page 4	Page 5	Page 6	Page 7	Page 8	Page 9	Pag 10
	Allergic C	ontact De	ermatitis		Sensitive	Skin Self	Diagnose	d 🗌	Rosacea	
	Sensitive	Skin Aller	gist Diagr	nosed 🗌	Fine Line	Wrinkles			Psoriasis	
	Skin Allen	gies			Acne Pim	ples			None	
	Eczema A	topic Skir	1		Blackhea	ds Whitel	neads			

Progress: Cloud Function

- Converted cloud function to Python
 - \circ Receives request from front end
 - Prepares request for model
 - Returns response to user
- Not deployed until model is finished

```
ackend.py [ 900 B
  1 import os
     import io
     import boto3
     import json
     import csv
  7
     # grab environment variables
     ENDPOINT_NAME = os.environ['ENDPOINT_NAME']
     runtime= boto3.client('runtime.sagemaker')
10
11 def lambda_handler(event, context):
12
         print("Received event: " + json.dumps(event, indent=2))
13
14
         data = json.loads(json.dumps(event))
15
         payload = data['data']
16
17
         #Import textvectorization from model and convert SkinConditions
18
19
         response = runtime.invoke_endpoint(EndpointName=ENDPOINT_NAME,
20
                                           ContentType='text/csv',
21
                                            Body=payload)
22
         result = json.loads(response['Body'].read().decode())
23
24
         predicted_labels = result['predictions']
25
26
         #Remove the 0 prediction from the returned elements
27
         for x in predicted_labels:
28
             if(predicted_labels[x] == '0'):
29
                 predicted_labels.pop(x)
30
         return predicted_labels
```

Progress: Model

- Evaluation Criteria higher values better
 - AUC Area Under Curve
 - broad measure of ability to predict
 - degree of separability between positive and negative
 - Current AUC is -0.35
 - Precision
 - Ratio of true positives to predicted positives
 - Current precision is -0.05
 - Too many false positives
 - Recall
 - Ratio of identified positives to false negatives
 - The recall is 0.90
 - Sufficient false negatives
 - o Fl Score
 - Comparison between precision and recall
 - F1 Score is -0.25
 - Imbalance between precision and recall

input_43	input:	[(None, 40)]	
InputLayer	output:	[(None, 40)]	
dense_126	input:	(None, 40)	
Dense	output:	(None, 256)	
dense_127	input:	(None, 256)	
dense 127	input:	(None, 256)	
Dense	output:	(None, 512)	
Dense			
Dense			
dense_128	input:	(None, 512)	

Progress: Different Model Tested Overview

SVC(rbf Kernel)

		precision	recall	f1-score	support
	0	0.00	0.00	0.00	664
	1	0.00	0.00	0.00	456
	2	0.00	0.00	0.00	426
	3	0.00	0.00	0.00	328
	4	0.00	0.00	0.00	249
	5	0.00	0.00	0.00	276
	6	0.00	0.00	0.00	225
	7	0.00	0.00	0.00	235
	8	0.00	0.00	0.00	218
micro	avg	0.00	0.00	0.00	3077
macro	avg	0.00	0.00	0.00	3077
weighted	avg	0.00	0.00	0.00	3077
samples	avg	0.00	0.00	0.00	3077

complex1NNmodel

	0	0.34	1.00	0.50	664
	1	0.23	1.00	0.37	456
	2	0.22	1.00	0.35	426
	3	0.00	0.00	0.00	328
	4	0.00	0.00	0.00	249
	5	0.00	0.00	0.00	276
	6	0.00	0.00	0.00	225
	7	0.00	0.00	0.00	235
	8	0.00	0.00	0.00	218
micro	avg	0.26	0.50	0.34	3077
macro	avg	0.09	0.33	0.14	3077
weighted	avg	0.14	0.50	0.21	3077
samples	avg	0.26	0.40	0.29	3077

Random Forest

69		precision	recall	f1-score	support
	0	0.37	0.26	0.30	664
	1	0.29	0.16	0.21	456
	2	0.24	0.14	0.18	426
	3	0.19	0.09	0.12	328
	4	0.17	0.06	0.09	249
	5	0.17	0.07	0.09	276
	6	0.13	0.05	0.07	225
	7	0.18	0.07	0.10	235
	8	0.08	0.02	0.04	218
micro	avg	0.25	0.13	0.17	3077
macro	avg	0.20	0.10	0.13	3077
weighted	avg	0.23	0.13	0.16	3077
samples	avg	0.13	0.10	0.10	3077

Remaining Work

• Model Refinement

- Continuously refine the machine learning model
- \circ Explore advanced algorithms and techniques to optimize performance
- Balance precision and recall to acceptable parameters
- Host on Cloud
 - \circ $\,$ Utilize cloud to host, manage, and scale the system components $\,$
 - \circ Use cloud for storage and networking to optimize performance

Remaining Work

- System Integration
 - \circ Integrate all system components to ensure smooth communication and operation
 - \circ $\;$ Test integration points to identify and resolve any potential issues $\;$
- Evaluate Performance
 - \circ Measure the efficiency and accuracy of the model
 - \circ Test the scalability by increasing the workload
 - Measure the response time of the system to user requests

Challenges/Solutions:

- Testing cost on cloud platforms
 - Testing will be costly as Cloud Platforms are pay as you go, making it ideal to wait for model completion to deploy our applications
- Producing a model with high recall and precision is difficult
 - Explore various algorithms to identify the most suitable approach
 - Enhance the parameters to optimize performance metrics

Conclusion:

- Continuously improving model
- Completed front end and back end
- Host components on cloud
- Evaluate performance and costs